Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 471: 134341, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38642496

RESUMO

Developing high-efficiency membrane for oil and dye removal is very urgent, because wastewater containing them can cause great damage to human and environment. In this study, a coated membrane was fabricated by applying DAC and PEI onto the commercial PVDF microfiltration membrane for supplying the demand. The coated membrane presents superhydrophlic and superoleophobic properties with a water contact angle of 0o and underwater oil contact angle exceed 150°, as well as excellent low underwater oil adhesion performance. The coated membrane shows high separation efficiency exceeded 99.0% and flux 350.0 L·m-2·h-1 when used for separating for six kinds of oil including pump oil, sunflower oil, n-hexadecane, soybean oil, diesel and kerosene in water emulsions. Additionally, the coated membrane can effectively remove anionic dyes, achieving rejection rates of 94.7%, 93.4%, 92.3%, 90.7% for the CR, MB, RB5, AR66, respectively. More importantly, the membrane was able to simultaneously remove emulsified oil and soluble anionic dyes in wastewater containing both of them. Therefore, this novel coated membrane can be a promising candidate for treating complex wastewater.

2.
Water Res ; 252: 121194, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295456

RESUMO

The fouling propensity of oppositely charged colloids (OCC) and similarly charged colloids (SCC) on reverse osmosis (RO) and nanofiltration (NF) membranes are systematically investigated using a developed collision-attachment approach. The probability of successful colloidal attachment (i.e., attachment efficiency) is modelled by Boltzmann energy distribution, which captures the critical roles of colloid-colloid/membrane interaction and permeate drag. Our simulations highlight the important effects of ionic strength Is, colloidal size dp and initial flux J0 on combined fouling. In a moderate condition (e.g., Is =10 mM, dp=50 nm and J0= 100 L/m2h), OCC mixtures shows more severe fouling compared to the respective single foulant owing to electrostatic neutralization. In contrast, the flux loss of SCC species falls between those of the two single foulants but more closely resembles that of the single low-charged colloids due to its weak electrostatic repulsion. Increased ionic strength Is leads to less severe fouling for OCC but more severe fouling for SCC, as a result of the suppressed electrostatic attraction/repulsion. At a high Is (e.g., 3-5 M), all the single and mixed systems show the identical pseudo-stable flux Js. Small colloidal size leads to the drag-controlled condition, where severe fouling occurs for both single and mixed foulants. On the contrary, better flux stability appears at greater dp for both individual and mixed species, thanks to the increasingly dominated role of energy barrier and thus lowered attachment efficiency. Furthermore, higher J0 above limiting flux exerts greater permeate drag, leading to elevated attachment efficiency, and thus more flux losses for both OCC and SCC. Our modelling gains deep insights into the role of energy barrier, permeate drag, and attachment efficiency in governing combined fouling, which provides crucial guidelines for fouling reduction in practical engineering.


Assuntos
Membranas Artificiais , Purificação da Água , Filtração , Coloides , Concentração Osmolar , Osmose
3.
Chemosphere ; 310: 136759, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36228729

RESUMO

In this work, graphene oxide (GO) sheets were prepared via a facile electrochemical exfoliation of graphite in acidic medium and subsequent oxidation with potassium permanganate. The GO sheets were employed for preparation of reduced GO adorned with nanosized silver (rGO/Ag NPs) using green reduction of GO and Ag(I) via olive fruit extract as a reducing and immobilizing agent. The crystal phase, morphology, and nanostructure of the prepared catalyst were characterized by XRD, SEM, EDX, UV-Vis and Raman spectroscopy techniques. The as-prepared rGO/Ag NPs showed superior catalytic performance towards the complete reduction (up to 99%) of 4-nitrophenol (4-NPH) to 4-aminophenol (4-APH) and rhodamine B (RhB) to Leuco RhB within 180 s using NaBH4 at ambient condition. The rate constant (k) values were found to be 0.021 and 0.022 s-1 for 4-NPH and RhB reduction, respectively. In addition, the regenerated catalyst could be reused after seven cycles without losing any apparent catalytic efficiency. Accounting for the excellent catalytic capability, chemical stability and environment-friendly synthesis protocol, the rGO/Ag NPs has great potential working as a heterogeneous catalyst in the transforming harmful organic contaminants into less harmful or harmless compounds.


Assuntos
Poluentes Ambientais , Grafite , Nanopartículas Metálicas , Olea , Grafite/química , Prata/química , Nanopartículas Metálicas/química
4.
Chemosphere ; 309(Pt 1): 136632, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181857

RESUMO

In the present work, novel sulfur-coated magnetic carbon nanotubes (MCNTs-S) material was fabricated by S coating on the MCNTs using a simple heating procedure. TGA, EDX, XRD, TEM, and VSM were employed to characterize the as-prepared composite. Using HPLC-UV system, the produced superparamagnetic sorbent was employed for the extraction and measurement of trace levels of five polycyclic aromatic hydrocarbons (PAHs) in environmental waters. The synergistic effect of the sulfur layer and CNTs substrate is primarily responsible for the remarkable extraction efficiency of the MCNTs-S sorbent towards PAHs. The experimental factors including MCNTs-S dosage, sorption time, elution solvent, ionic strength and solution pH were explored and optimized. Considering that the ionic strength and pH do not have any impact on the PAHs extraction, as a result, there is no need the unnecessary adjustment of the water samples. The linear dynamic ranges and detection limits under optimal conditions were in the range of 0.05-0.11 ng mL-1 and 0.2-150 ng mL-1, respectively. The analysis of PAHs in the real samples (sea water and river water) using this approach was successfully assessed with appropriate recovery values (94.6%-99.0%).


Assuntos
Nanotubos de Carbono , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Nanotubos de Carbono/química , Extração em Fase Sólida/métodos , Recursos Hídricos , Poluentes Químicos da Água/análise , Água/química , Fenômenos Magnéticos , Enxofre , Solventes/análise
5.
Sci Total Environ ; 819: 151991, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848265

RESUMO

Coal gasification wastewater contains many refractory and toxic pollutants, especially high concentrations of total phenols, which are difficult to degrade by microorganisms. The aim of our study is to explore the anaerobically enhanced degradation of coal gasification wastewater by an iron­carbon micro-electric field coupled with anaerobic co-digestion. The optimal ratio of activated carbon to iron and the optimal dosage of co-substrate (glucose = 1500 mg/L) were investigated by batch tests. In the long-term operation of the iron­carbon reactor, 1500 mg/L glucose was added into the influent, and carbon and iron in a ratio of 2:1 were added to the anaerobic sludge. The average effluent COD and total phenols concentrations were kept at approximately 455 and 56.3 mg/L, respectively, and removal rates of both reached 90% after treatment with the iron­carbon micro-electric field coupled with anaerobic co-digestion in the iron­carbon reactor. Moreover, compared with the control reactor, the methane production from the iron­carbon reactor increased to 200 mL/day, with an increase in the methane production rate by 90%. Microbial community analysis indicated that hydrogenotrophic methanogens were enriched, and syntrophic metabolism via interspecies hydrogen transfer was enhanced. Direct interspecies electron transfer might occur between the potential electroactive bacteria Clostridium, Bacteroidetes, and Anaerolinea and the methanogens Methanosaeta, Methanobacterialies, and Methanobacterium for syntrophic metabolism through the iron­carbon process coupled with anaerobic co-digestion.


Assuntos
Carvão Mineral , Águas Residuárias , Anaerobiose , Reatores Biológicos , Digestão , Ferro , Metano/metabolismo , Fenóis/metabolismo , Esgotos/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química
6.
Sci Total Environ ; 759: 143523, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33223184

RESUMO

Coal gasification wastewater (CGW) contains high concentration phenols which lead to poor anaerobic biodegradability and resource utilization. In this paper, new insights to improve synthetic CGW anaerobic degradation with the help of graphene under co-digestion conditions were investigated. Batch tests showed that with the addition of graphene dosage of 10 g/L and glucose as a co-substrate with chemical oxygen demand (COD) concentration of 2000 mg/L, the average COD concentration decreased from 3995 mg/L on day 1 to 983 mg/L on day 12. The average total phenol (TP) concentration decreased from 431 mg/L on day 1 to 23 mg/L on day 12. The cumulative methane production for 12 days was about 200 mL. Long-term experiments showed the average effluent COD and total phenol reached 1137 mg/L and 200 mg/L, respectively. While methane production stabilized at 500 mL/d. In addition, the coenzyme F420 concentration increased from 1.075 µmol/g/VSS to 2.3 µmol/g/VSS. The analysis of microbial community structure indicated that the performance of phenols removal and methane production was related to the main microbial flora. The enriched Clostridium, Pseudomonas and species from Firmicutes and Chloroflexi participated in the stages of hydrolysis and acidogenesis. The electrogens Pseudomonas and archaea Methanosaeta were likely the major groups taking part in the direct interspecies electron transfer (DIET). The results obtained in this paper provide a theoretical basis for high-efficiency anaerobic degradation of CGW in practical engineering applications.


Assuntos
Grafite , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Digestão , Metano , Fenóis , Esgotos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...